Relations and Functions

Question 1.

The domain of the function $^{7-x}P_{x-3}$ is

- (a) $\{1, 2, 3\}$
- (b) $\{3, 4, 5, 6\}$
- (c) $\{3, 4, 5\}$
- (d) {1, 2, 3, 4, 5}

Answer: (c) {3, 4, 5}

The function $f(x) = {}^{7-x}P_{x-3}$ is defined only if x is an integer satisfying the following inequalities:

- 1. $7 x \ge 0$
- 2. $x 3 \ge 0$
- 3. $7 x \ge x 3$

Now, from 1, we get $x \le 7 \dots 4$

and from 2, we get $x \le 5 \dots 6$

From 4, 5 and 6, we get

 $3 \le x \le 5$

So, the domain is $\{3, 4, 5\}$

Question 2.

The domain of $tan^{-1}(2x + 1)$ is

- (a) R
- (b) $R \{1/2\}$
- (c) $R \{-1/2\}$
- (d) None of these

Answer: (a) R

Since $\tan^{-1} x$ exists if $x \in (-\infty, \infty)$

So, $tan^{-1}(2x + 1)$ is defined if

$$-\infty < 2x + 1 < \infty$$

$$\Rightarrow$$
 - ∞ < x < ∞

$$\Rightarrow$$
 x \in (- ∞ , ∞)

$$\Rightarrow x \in R$$

So, domain of $tan^{-1}(2x + 1)$ is R.

Question 3.

Two functions f and g are said to be equal if f

- (a) the domain of f =the domain of g
- (b) the co-domain of f =the co-domain of g
- (c) f(x) = g(x) for all x
- (d) all of above

Answer: (d) all of above

Two functions f and g are said to be equal if f

- 1. the domain of f =the domain of g
- 2. the co-domain of f =the co-domain of g
- 3. f(x) = g(x) for all x

Question 4.

If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ is given by g(x) = x/(x-1). The value of gof(x) is

- (a) $(x^2 + 2)/(x^2 + 1)$
- (b) $x^2/(x^2+1)$
- (c) $x^2/(x^2+2)$
- (d) none of these

Answer: (a) $(x^2 + 2)/(x^2 + 1)$

Given $f(x) = x^2 + 2$ and g(x) = x/(x - 1)

Now, $gof(x) = g(x^2 + 2) = (x^2 + 2)/(x^2 + 2 - 1) = (x^2 + 2)/(x^2 + 1)$

Question 5.

Given g(1) = 1 and g(2) = 3. If g(x) is described by the formula g(x) = ax + b, then the value of a and b is

- (a) 2, 1
- (b) -2, 1
- (c) 2, -1
- (d) -2, -1

Answer: (c) 2, -1

Given, g(x) = ax + b

Again, g(1) = 1

$$\Rightarrow$$
 a \times 1 + b = 1

$$\Rightarrow$$
 a + b = 1 1

and
$$g(2) = 3$$

$$\Rightarrow$$
 a \times 2 + b = 3

$$\Rightarrow$$
 2a + b = 3 2

Solve equation 1 and 2, we get

$$a = 2, b = -1$$

Question 6.

Let $f: R \to R$ be a function given by $f(x) = x^2 + 1$ then the value of $f^{-1}(26)$ is

- (a) 5
- (b) -5
- $(c) \pm 5$
- (d) None of these

Answer: (c) ± 5

Let
$$y = f(x) = x^2 + 1$$

$$\Rightarrow$$
 y = $x^2 + 1$

$$\Rightarrow$$
 y - 1 = x^2

$$\Rightarrow x = \pm \sqrt{(y-1)}$$

$$\Rightarrow$$
 f⁻¹ (x) = $\pm \sqrt{(x-1)}$

Now, $f^{-1}(26) = \pm \sqrt{(26-1)}$

$$\Rightarrow$$
 f⁻¹ (26) = $\pm\sqrt{(25)}$

$$\Rightarrow$$
 f⁻¹ (26) = ±5

Question 7.

the function f(x) = x - [x] has period of

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Answer: (b) 1

Let T is a positive real number.

Let f(x) is periodic with period T.

Now,
$$f(x + T) = f(x)$$
, for all $x \in R$

$$\Rightarrow$$
 x + T - [x + T] = x - [x], for all x \in R

$$\Rightarrow$$
 [x + T] - [x] = T, for all x \in R

Thus, there exist T > 0 such that f(x + T) = f(x) for all $x \in R$

Now, the smallest value of T satisfying f(x + T) = f(x) for all $x \in R$ is 1 So, f(x) = x - [x] has period 1

Question 8.

The function $f(x) = \sin(\pi x/2) + \cos(\pi x/2)$ is periodic with period

- (a) 4
- (b) 6
- (c) 12
- (d) 24

Answer: (a) 4

Period of $\sin(\pi x/2) = 2\pi/(\pi/2) = 4$

Period of cos $(\pi x/2) = 2\pi/(\pi/2) = 4$

So, period of f(x) = LCM(4, 4) = 4

Question 9.

The domain of the function $f(x) = x/(1 + x^2)$ is

- (a) $R \{1\}$
- (b) $R \{-1\}$
- (c) R
- (d) None of these

Answer: (c) R

Given, function $f(x) = x/(1 + x^2)$

Since f(x) is defined for all real values of x.

So, domain(f) = R

Question 10.

If f: R \rightarrow R is defined by $f(x) = x^2 - 3x + 2$, the f(f(y)) is

- (a) $x^4 + 6x^3 + 10x^2 + 3x$
- (b) $x^4 6x^3 + 10x^2 + 3x$
- (c) $x^4 + 6x^3 + 10x^2 3x$
- (d) $x^4 6x^3 + 10x^2 3x$

Answer: (d) $x^4 - 6x^3 + 10x^2 - 3x$

Given, $f(x) = x^2 - 3x + 2$

Now, $f(f(y)) = f(x^2 - 3x + 2)$

 $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$

 $= x^4 - 6x^3 + 10x^2 - 3x$

Question 11.

If n is the smallest natural number such that n + 2n + 3n + + 99n is a perfect square, then the number of digits in square of n is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Answer: (c) 3

Given that

$$n + 2n + 3n + \dots + 99n$$

$$= n \times (1 + 2 + 3 + \dots + 99)$$

$$= (n \times 99 \times 100)/2$$

$$= n \times 99 \times 50$$

$$=$$
 n \times 9 \times 11 \times 2 \times 25

To make it perfect square we need 2×11

So
$$n = 2 \times 11 = 22$$

Now
$$n^2 = 22 \times 22 = 484$$

So, the number of digit in $n^2 = 3$

Question 12.

Let f : R - R be a function defined by $f(x) = \cos(5x + 2)$, then f is

- (a) injective
- (b) surjective
- (c) bijective
- (d) None of these

Answer: (d) None of these

Given,
$$f(x) = cos(2x + 5)$$

Period of
$$f(x) = 2\pi/5$$

Since f(x) is a periodic function with period $2\pi/5$, so it is not injective.

The function f is not surjective also as its range [-1, 1] is a proper subset of its co-domain R

Question 13.

The function $f(x) = \sin(\pi x/2) + 2\cos(\pi x/3) - \tan(\pi x/4)$ is periodic with period

- (a) 4
- (b) 6
- (c) 8
- (d) 12

```
Answer: (d) 12
Period of \sin (\pi x/2) = 2\pi/(\pi/2) = 4
Period of \cos (\pi x/3) = 2\pi/(\pi/3) = 6
Period of \tan (\pi x/4) = \pi/(\pi/4) = 4
So, period of f(x) = LCM (4, 6, 4) = 12
```

Question 14.

If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ is given by g(x) = x/(x-1). The value of gof(x) is

- (a) $(x^2 + 2)/(x^2 + 1)$
- (b) $x^2/(x^2+1)$
- (c) $x^2/(x^2+2)$
- (d) none of these

```
Answer: (a) (x^2 + 2)/(x^2 + 1)
Given f(x) = x^2 + 2 and g(x) = x/(x - 1)
Now, gof(x) = g(x^2 + 2) = (x^2 + 2)/(x^2 + 2 - 1) = (x^2 + 2)/(x^2 + 1)
```

Question 15.

The domain of the function $^{7-x}P_{x-3}$ is

- (a) $\{1, 2, 3\}$
- (b) {3, 4, 5, 6}
- (c) $\{3, 4, 5\}$
- (d) $\{1, 2, 3, 4, 5\}$

Answer: (c) {3, 4, 5}

The function $f(x) = {}^{7-x}P_{x-3}$ is defined only if x is an integer satisfying the following inequalities:

- 1. $7 x \ge 0$
- 2. $x 3 \ge 0$
- 3. $7 x \ge x 3$

Now, from 1, we get $x \le 7 \dots 4$

and from 2, we get $x \le 5 \dots 6$

From 4, 5 and 6, we get

 $3 \le x \le 5$

So, the domain is $\{3, 4, 5\}$

Question 16.

If $f(x) = e^x$ and $g(x) = \log_e x$ then the value of f(x) is

- (a) 0
- (b) 1
- (c) -1
- (d) None of these

Answer: (b) 1

Given,
$$f(x) = e^x$$

and
$$g(x) = \log x$$

$$fog(x) = f(g(x))$$

$$= f(\log x)$$

$$=e^{\log x}$$

$$= x$$

So,
$$fog(1) = 1$$

Question 17.

A relation R is defined from the set of integers to the set of real numbers as (x, y) = R if $x^2 + y^2 = 16$ then the domain of R is

- (a) (0, 4, 4)
- (b) (0, -4, 4)
- (c)(0, -4, -4)
- (d) None of these

Answer: (b) (0, -4, 4)

Given that:

$$(x, y) \in R \Leftrightarrow x^2 + y^2 = 16$$

$$\Leftrightarrow$$
 y = $\pm \sqrt{(16 - x^2)}$

when
$$x = 0 \Rightarrow y = \pm 4$$

$$(0, 4) \in R \text{ and } (0, -4) \in R$$

when
$$x = \pm 4 \Rightarrow y = 0$$

$$(4, 0) \in R \text{ and } (-4, 0) \in R$$

Now for other integral values of x, y is not an integer.

Hence
$$R = \{(0, 4), (0, -4), (4, 0), (-4, 0)\}$$

So, Domain(R) =
$$\{0, -4, 4\}$$

Question 18.

The period of the function $f(x) = \sin(2\pi x/3) + \cos(\pi x/3)$

- (a) 3
- (b) 4
- (c) 12
- (d) None of these

```
Answer: (c) 12
```

Given, function $f(x) = \sin(2\pi x/3) + \cos(\pi x/2)$

Now, period of $\sin(2\pi x/3) = 2\pi/\{(2\pi/3)\} = (2\pi \times 3)/(2\pi) = 3$

and period of $\cos(\pi x/2) = 2\pi/\{(\pi/2)\} = (2\pi \times 2)/(\pi) = 2 \times 2 = 4$

Now, period of f(x) = LCM(3, 4) = 12

Hence, period of function $f(x) = \sin(2\pi x/3) + \cos(\pi x/2)$ is 12

Question 19.

If f(x) = ax + b and g(x) = cx + d and f(g(x)) = g(f(x)) then

- (a) f(a) = g(c)
- (b) f(b) = g(b)
- (c) f(d) = g(b)
- (d) f(c) = g(a)

Answer: (c) f(d) = g(b)

Given, f(x) = ax + b and g(x) = cx + d and

Now, $f\{g(x)\} = g\{f(x)\}$

$$\Rightarrow$$
 f{cx + d} = g{ax + b}

$$\Rightarrow$$
 a(cx + d) + b = c(ax + b) + d

$$\Rightarrow$$
 ad + b = cb + d

$$\Rightarrow$$
 f(d) = g(b)

Question 20.

The domain of the function $f(x) = 1/(2 - \cos 3x)$ is

- (a) (1/3, 1)
- (b) [1/3, 1)
- (c)(1/3,1]
- (d) R

Answer: (d) R

Given

function is $f(x) = 1/(2 - \cos 3x)$

Since $-1 \le \cos 3x \le 1$ for all $x \in R$

So, $-1 \le 2 - \cos 3x \le 1$ for all $x \in R$

 \Rightarrow f(x) is defined for all x \in R

So, domain of f(x) is R